If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3v^2-9v-1=0
a = 3; b = -9; c = -1;
Δ = b2-4ac
Δ = -92-4·3·(-1)
Δ = 93
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{93}}{2*3}=\frac{9-\sqrt{93}}{6} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{93}}{2*3}=\frac{9+\sqrt{93}}{6} $
| 3x/5=16 | | 5(5x+2)=-3(2x-5) | | -115-3x=110-6x | | h/9+21=-7 | | 4x-5=5(x-3) | | 3/x=-9/4 | | 5x+7x+x=56 | | x^2=441-1 | | 3(x+2)-4=18 | | 3(x+3)=159 | | 3h-5=37-4h | | 4y-7(y=6)=5y-2 | | 2(3x-4)=8x-4-2x. | | 3x+2=x^2–4x-28 | | 6(2x-3)-36=30 | | 32x*2x=0 | | -50x^2+1000x-3750=0 | | 1/3n+3/5=4/5 | | 48/x=-12 | | 45=2y+3y | | n-3/5=1/5 | | y=-6y+7 | | 3/4x=-9/2 | | 4m-12+5m+10=m+9 | | 6x-4+5x-1=115 | | 10u=3u+2u | | 7(5-x)=3x=5 | | 2x+5x-1=115 | | 7=y/2=-3 | | 5x+3x-4=6x+2 | | (b-6)/3=(b+7)/2 | | -6=-5v+2(v-6) |